22/06(a)

JUNE 2006

The University of Sydney

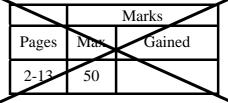
CHEMISTRY 1B - CHEM1102

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMB	SER
OTHER	TABI	LE
NAMES	NUMB	SER

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 22 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks		
Page	Max	Gained		Marker
14	4			
15	4			
16	4			
17	7			
18	4			
19	5			
20	5			
21	9			
23	8			
Total	50			
Check	Total			

CHEM1102 2006-J-2	June 2006	22/06(a)						
• A lecture demonstration showed that a wire with a weight attached can cut through a block of ice (solid water) without the block falling apart. Explain that phenomenon.								
Sketch the phase diagram of water and ex itself in the phase diagram.	plain how the above phenomenon manifests	-						
		-						

CHEM1102	2006-J-3	June 2006	22/06(a)				
	Carbon has a number of allotropes, the two major ones being graphite and diamond. What are allotropes?						
Give a different ex	ample for allotropes.		-				
The phase diagram	of carbon shows that diamond is no	t the stable allotrope under	-				
	Why then does diamond exist unde		_				
			_				
	o factors that determine whether a c to a chemical reaction.	collision between two	1				

CHEM1102	2006-J-4	June 2006	22/06(a			
• Magnesium hydroxide, Mg(OH) ₂ , is used as treatment for excess acidity in the stomach. Its solubility product constant, K_{sp} , is 7.1×10^{-12} M ³ . Calculate the pH of a solution that is in equilibrium with Mg(OH) ₂ (s).						
	Answer:					
Determine whether 3 pH of 8.00.	$1.0 \text{ g of Mg(OH)}_2$ will dissolve in 1.0 L of	a solution buffered to a				
		YES / NO	-			

June 2006

Marks

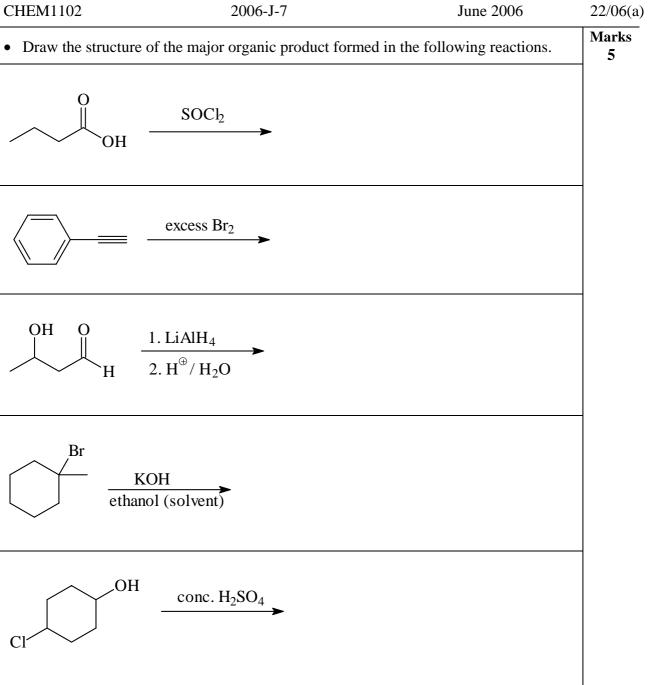
3

4

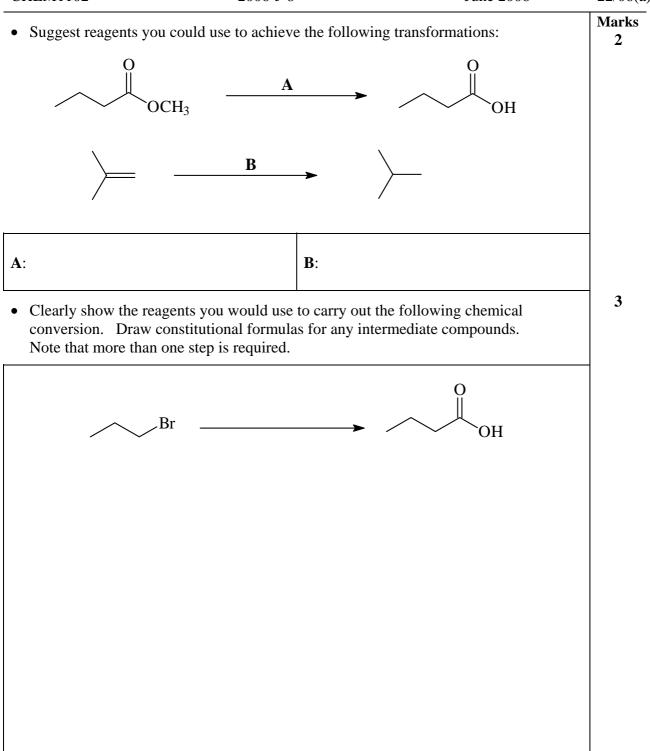
• Consider the compound with formula [CoCl₂(NH₃)₄]Br·2H₂O.

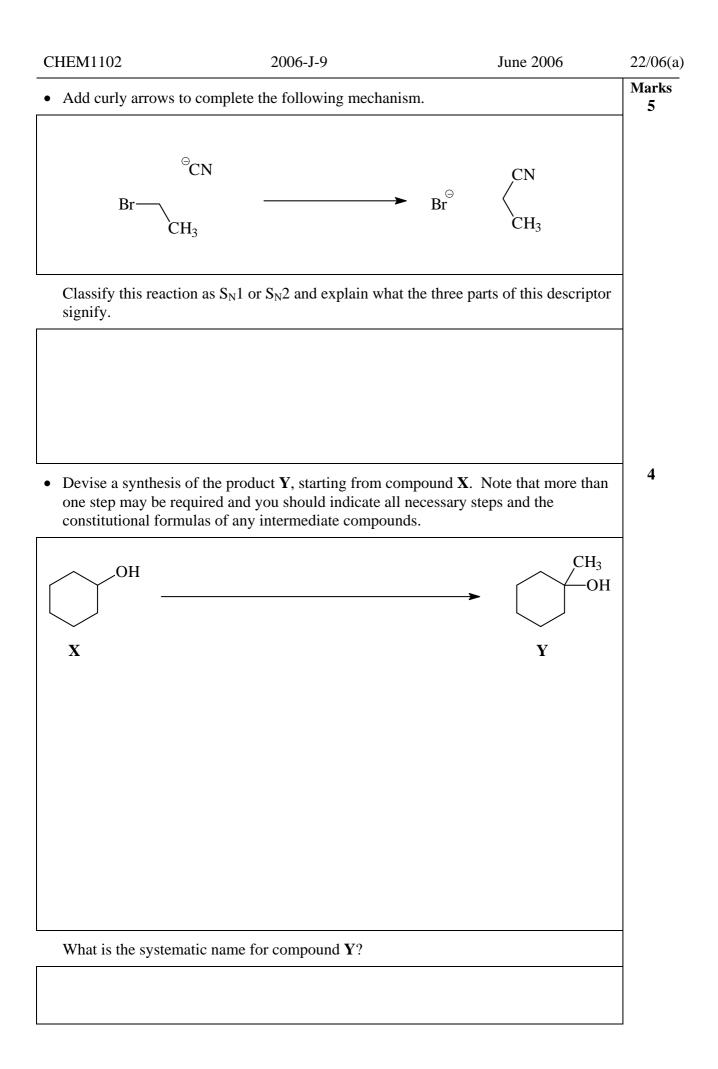
Write the formula of the complex ion.

Write the symbols of the ligand donor atoms.


What is the *d* electron configuration of the metal ion in this complex?

• Describe the difference between a strong and a weak acid.


Describe in qualitative terms how the percentage ionisation of a weak acid changes when an aqueous solution thereof is diluted.


Which chemical principle can be used to explain the change in percentage ionisation of a weak acid on dilution and how?

CHEM1102 2006-J-	-6	June 2006	22/06(a)
• Buffer systems are frequently used in cl does it function? Use equations where		er system and how	Marks 4
What ratio of concentrations of acetic a prepare a buffer with $pH = 4.00$? The <i>R</i>	cid to sodium acetate wo X_a of acetic acid is 1.8×10^{-10}	uld you require to 10^{-5} M.	
	Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• The amino acid serine is shown below: HO HO H_{2N} COOH	Marks 6
List the substituents attached to the stereogenic centre in order of decreasing priority. highest priority lowest priority	-
Assign the absolute configuration of the stereoisomer shown above. Draw the dipeptide formed by the condensation of two serine residues.	
Explain briefly what is meant by the <i>primary structure</i> of a protein.	
• Draw the repeating unit of the polymer formed in the following reaction. $ \begin{array}{c} $	2

CHEM1102 - CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	imal fract	ions		Decimal multiples				
Fraction	Prefix	Symbol	Mul	ltiple	Prefix	Symbol		
10^{-3}	milli	m	10	0^{3}	kilo	k		
10^{-6}	micro	μ	10	0^{6}	mega	Μ		
10^{-9}	nano	n	10	0^{9}	giga	G		
10^{-12}	pico	р						

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) ~+~ 4H^+(aq) ~+~ e^- \rightarrow ~Mn^{3+} ~+~ 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1102 - CHEMISTRY 1B

	zjui jormuius
Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
¹⁴ C age = 8033 $\ln(A_0/A_t)$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$\ln x = 2.303 \log x$

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нелим Не 4.003
3	4 beryllium											5 boron	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Limited	Berleiow											BORON	CARBON	NIROGEN	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 SODIUM	12 magnesium											13 ALUMINIUM	14 SILICON	15 phosphorus	16 SULFUR	17 CHLORINE	18 ARGON
Na	Magnesium											Alominion	Silicon	Рноврнокоз	S	CI	Arcon
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19 potassium	20 calcium	21 scandium	22 TITANIU		24 CHROMIUM	25 manganese	26	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 KRYPTON
K	Ca	SCANDIUM	Ti		Cr	MANGANESE	Fe	Совал	Ni	Cu	Zn	Gallion	GERMANIUM	ARSENIC	Selenium	BROMINE	KRIPION
39.10	40.08	44.96	47.8	8 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 ZIRCONI		42 molybdenum	43 TECHNETIUM	44 ruthenium	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
R b	SRONHOM	Y	Zircow		MOLYBBENUM	Тс	RU	Rh	PALLADIUM	Ag	Cabinitian	In	Sn	Sb	Te	I	XeNON
85.47	87.62	88.91	91.2		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40		118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	BARIUM Ba		HAFNIU Hf		TUNGSTEN	RHENIUM Re	OSMIUM OS	IRIDIUM Ir	PLATINUM Pt	GOLD Au	MERCURY Hg	THALLIUM	LEAD Pb	візмитн Ві	POLONIUM PO	ASTATINE At	radon Rn
132.91	137.34		178.4		183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103			106	107	108	109									
FRANCIUM Fr	RADIUM Ra		RUTHERFOR Rf		seaborgium Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]			[261		[266]	[262]	[265]	[266]									
	5		58	59	60	61	62	63	64	65		66	67	68	69	70	71
LANTHAN	IDES LANTH		ce Ce	praseodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLINIU GAD	m terbi		Dy	HOLMIUM HO	ERBIUM Er	THULIUM Tm	ytterbium Yb	LUTETIUM Lu
	138		0.12	140.91	144.24	[144.9]	150.4	151.96	157.25				164.93	167.26	168.93	173.04	174.97
	8		90	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINID	ES ACTE		^{рким}	protactinium Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIUM Cm	BERKEL		LIFORNIUM C	EINSTEINIUM ES	FERMIUM Fm	MENDELEVIUM MC	NOBELIUM NO	LAWRENCIUM
	[227		2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]				[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS